Pengertian Distribusi Tenaga Listrik

Pengertian Distribusi Tenaga Listrik - Berikut adalah materi mengenai Pengertian Distribusi Tenaga Listrik yang akan diulas lebih lanjut di Dunia Elektro

Pengertian Distribusi Tenaga Listrik


     Sistem Distribusi merupakan bagian dari sistem tenaga listrik. Sistem distribusi ini berguna untuk menyalurkan tenaga listrik dari sumber daya listrik besar (Bulk Power Source) sampai ke konsumen. Jadi fungsi distribusi tenaga listrik adalah; 1) pembagian atau penyaluran tenaga listrik ke beberapa tempat (pelanggan), dan 2) merupakan sub sistem tenaga listrik yang langsung berhubungan dengan pelanggan, karena catu daya pada pusat-pusat beban (pelanggan) dilayani langsung melalui jaringandistribusi.
         Tenaga listrik yang dihasilkan oleh pembangkit tenaga listrik besar dengan tegangan dari 11 kV sampai 24 kV dinaikan tegangannya oleh gardu induk dengan transformator penaik tegangan menjadi 70 kV ,154kV, 220kV atau 500kV kemudian disalurkan melalui saluran transmisi. Tujuan menaikkan tegangan ialah untuk memperkecil kerugian daya listrik pada saluran transmisi, dimana dalam hal ini kerugian daya adalah sebanding dengan kuadrat arus yang mengalir (I2.R). Dengan daya yang sama bila nilai tegangannya diperbesar, maka arus yang mengalir semakin kecil sehingga kerugian daya juga akan kecil pula. Dari saluran transmisi, tegangan diturunkan lagi menjadi 20 kV dengan transformator penurun tegangan pada gardu induk distribusi, kemudian dengan sistem tegangan tersebut penyaluran tenaga listrik dilakukan oleh saluran distribusi primer.
     Dari saluran distribusi primer inilah gardu-gardu distribusi mengambil tegangan untuk diturunkan tegangannya dengan trafo distribusi menjadi sistem tegangan rendah, yaitu 220/380Vol t . Selanjutnya disalurkan oleh saluran distribusi sekunder ke konsumen-konsumen. Dengan ini jelas bahwa sistem distribusi merupakan bagian yang penting dalam sistem tenaga listrik secara keseluruhan. Pada sistem penyaluran daya jarak jauh, selalu digunakan tegangan setinggi mungkin, dengan menggunakan trafo-trafo step-up. Nilai tegangan yang sangat tinggi ini (HV,UHV,EHV) menimbulkan beberapa konsekuensi antara lain: berbahaya bagi lingkungan dan mahalnya harga perlengkapan perlengkapannya, selain menjadi tidak cocok dengan nilai tegangan yang dibutuhkan pada sisi beban. Maka, pada daerah-daerah pusat beban tegangan saluran yang tinggi ini diturunkan kembali dengan menggunakan trafo-trafo step-down. Akibatnya, bila ditinjau nilai tegangannya, maka mulai dari titik sumber hingga di titik beban, terdapat bagian-bagian saluran yang memiliki nilai tegangan berbeda-beda.
Gb. Sistem Penyaluran Tenaga Listrik

Sejarah PLN (Perusahaan Listrik Negara) Indonesia

Sejarah PLN (Perusahaan Listrik Negara) Indonesia - Berikut ini adalah informasi mengenai Sejarah PLN (Perusahaan Listrik Negara) Indonesia yang akan kami bahas di Dunia Elektro

Sejarah PLN (Perusahaan Listrik Negara) Indonesia




      Berawal di akhir abad ke 19, perkembangan ketenagalistrikan di Indonesia mulai ditingkatkan saat beberapa perusahaan asal Belanda yang bergerak di bidang pabrik gula dan pabrik teh mendirikan pembangkit listrik untuk keperluan sendiri.
       Antara tahun 1942-1945 terjadi peralihan pengelolaan perusahaan- perusahaan Belanda tersebut oleh Jepang, setelah Belanda menyerah kepada pasukan tentara Jepang di awal Perang Dunia II.
Proses peralihan kekuasaan kembali terjadi di akhir Perang Dunia II pada Agustus 1945, saat Jepang menyerah kepada Sekutu. Kesempatan ini dimanfaatkan oleh para pemuda dan buruh listrik melalui delegasi Buruh/Pegawai Listrik dan Gas yang bersama-sama dengan Pimpinan KNI Pusat berinisiatif menghadap Presiden Soekarno untuk menyerahkan perusahaan-perusahaan tersebut kepada Pemerintah Republik Indonesia. Pada 27 Oktober 1945, Presiden Soekarno membentuk Jawatan Listrik dan Gas di bawah Departemen Pekerjaan Umum dan Tenaga dengan kapasitas pembangkit tenaga listrik sebesar 157,5 MW.
      Pada tanggal 1 Januari 1961, Jawatan Listrik dan Gas diubah menjadi BPU-PLN (Badan Pimpinan Umum Perusahaan Listrik Negara) yang bergerak di bidang listrik, gas dan kokas yang dibubarkan pada tanggal 1 Januari 1965. Pada saat yang sama, 2 (dua) perusahaan negara yaitu Perusahaan Listrik Negara (PLN) sebagai pengelola tenaga listrik milik negara dan Perusahaan Gas Negara (PGN) sebagai pengelola gas diresmikan.
        Pada tahun 1972, sesuai dengan Peraturan Pemerintah No.17, status Perusahaan Listrik Negara (PLN) ditetapkan sebagai Perusahaan Umum Listrik Negara dan sebagai Pemegang Kuasa Usaha Ketenagalistrikan (PKUK) dengan tugas menyediakan tenaga listrik bagi kepentingan umum.
    Seiring dengan kebijakan Pemerintah yang memberikan kesempatan kepada sektor swasta untuk bergerak dalam bisnis penyediaan listrik, maka sejak tahun 1994 status PLN beralih dari Perusahaan Umum menjadi Perusahaan Perseroan (Persero) dan juga sebagai PKUK dalam menyediakan listrik bagi kepentingan umum hingga sekarang.

Pengaplikasian Energi Terbarukan

Pengaplikasian Energi Terbarukan - Berikut ini adalah materi tentang Pengaplikasian Energi Terbarukan yang akan dibahas lebih lanjut di dunia elektro

Pengaplikasian Energi Terbarukan


Dalam pengaplikasiannya energi terbarukan dapat diaplikasikan kedalam sistem pembangkitan listrik tetapi dalam skala yang lebih kecil, diantaranya adalah:

A.    PLTMH (Pembangkit Listrik Tenaga Mikrohidro)
Pembangkit energi air skala mikro atau pembangkit tenaga mikrohidro semakin populer sebagai alternatif sumber energi, terutama di wilayah yang terpencil. Sistem pembangkit tenaga mikrohidro dapat dipasang di sungai kecil dan tidak memerlukan dam yang besar sehingga dampaknya terhadap lingkungan sangat kecil.


Pembangkit tenaga mikrohidro dapat digunakan langsung sebagai penggerak mesin atau digunakan untuk menggerakan generator listrik. Instalasi pembangkit listrik dengan tenaga mikrohidro biasa disebut sebagai Pembangkit Listrik Tenaga Mikrohidro, disingkat PLTMH. Daya yang dibangkitkan anatara 5 kW sampai dengan 100 kW

B.  PLTS (Pembangkit Listrik Tenaga Surya)
Pembangkit listrik tenaga surya adalah pembangkit listrik yang mengubah energi surya menjadi energi listrik. Pembangkitan listrik bisa dilakukan dengan dua cara, yaitu secara langsung menggunakan photovoltaic dan secara tidak langsung dengan pemusatan energi surya. Photovoltaic mengubah secara langsung energi cahaya menjadi listrik menggunakan efek fotoelektrik. Pemusatan energi surya menggunakan sistem lensa atau cermin dikombinasikan dengan sistem pelacak untuk memfokuskan energi matahari ke satu titik untuk menggerakan mesin kalor.

C.  Pembangkit Listrik Tenaga Panas Bumi


Pembangkit Listrik Tenaga Panas Bumi adalah Pembangkit Listrik (Power generator) yang menggunakan panas bumi (Geothermal) sebagai energi penggeraknya. Indonesia dikaruniai sumber panas bumi yang berlimpah karena banyaknya gunung berapi di indonesia, dari pulau-pulau besar yang ada, hanya pulau Kalimantan saja yang tidak mempunyai potensi panas bumi. Keuntungan teknologi ini antara lain : bersih, dapat beroperasi pada suhu yang lebih rendah daripada PLTN, dan aman, bahkan geothermal adalah yang terbersih dibandingkan dengan nuklir, minyak bumi dan batu bara. Meskipun tergolong ramah lingkungan, namun beberapa hal perlu dipertimbangkan apabila pembangkit listrik tenaga panas bumi ingin dikembangkan sebagai pembangkit dengan skala besar. 
Beberapa parameter yang harus dipertimbangkan adalah kandungan uap panas dan sifat fisika dari uap panas di dalam reservoir dan penurunan tekanan yang terjadi sebagai akibat digunakannya uap panas di dalam reservoir. Apabila semua aspek tersebut dapat dipenuhi, tidak tertutup kemungkinan bahwa pembangkit ini akan diterima oleh semua pihak. PLTP juga membawa pengaruh yang kurang menguntungkan pada lingkungan dan harus diminimalisasi, antara lain : polusi udara, polusi air, polusi suara, dan penurunan permukaan tanah.

D.  Pembangkit Listrik Gasifikasi Biomassa


Mungkin nama pembangkit listrik yang satu ini masih asing di telinga kita karena memang terbilang baru di Indonesia. Sumber energi terbarukan yang saat ini banyak dikembangkan di negeri kita hanya di seputar tenaga mikrohidro, tenaga angin dan tenaga surya. Sumber energi yang berupa biomassa, belum banyak dikembangkan, padahal potensinya sangatlah besar. Salah satu potensi biomassa yang sangat besar dan belum banyak dimanfaatkan adalah pelepah sawit.

E.  Pembangkit Listrik Tenaga Angin 


Pembangkit listrik tenaga angin adalah suatu pembangkit listrik yang menggunakan angin sebagai sumber energi untuk menghasilkan energi listrik. Pembangkit ini dapat mengkonversikan energi angin menjadi energi listrik dengan menggunakan turbin angin atau kincir angin. Sistem pembangkitan listrik menggunakan angin sebagai sumber energi merupakan sistem alternatif yang sangat berkembang pesat, mengingat angin merupakan salah satu energi yang tidak terbatas di alam.

F.  Wind-Hydrogen Hybrid Power System


Tenaga angin merupakan salah satu sumber energi yang terbarukan dan juga energi yang bersih lingkungan karena relatif tidak menimbulkan emisi udara. Namun masalah kunci dari sumber tenaga ini adalah ketidak kontinyu-an energi dari alam itu sendiri. sehingga banyak cara atau metode yang dikembangkan untuk menanggulangi masalah tersebut, salah satunya adalah dengan menggunakan sebagian energi yang dihasilkan untuk memproduksi hidrogen melalui proses elektrolisis air. Kemudian hidrogen ini disimpan sebagai bahan bakar untuk menghasilkan listrik pada saat beban puncak atau kondisi dimana pembangkit listrik tenaga angin tersebut kekurangan daya untuk memenuhi permintaan beban. 
Energi yang tersimpan dalam bentuk hidrogen dapat di ubah kembali menjadi tenaga listrik dengan teknologi fuel cell ataupun dengan teknologi mesin bakar (combustion engine) yang terhubung dengan generator listrik. Sistem pembangkit gabungan antara energi angin dan hidrogen ini sering disebut Wind-Hydrogen hybrid power system seperti terliahat pada gambar diatas.




Energi Terbarukan (Renewable Energy)

Energi Terbarukan (Renewable Energy) - Berikut ini adalah materi tentang Energi Terbarukan (Renewable Energy) yang akan diulas lebih lanjut di Dunia Elektro

Energi Terbarukan (Renewable Energy)



1. Definisi Energi Terbarukan
     Konsep energi terbarukan mulai dikenal pada tahun 1970-an, sebagai upaya untuk mengimbangi pengembangan energi berbahan bakar nuklir dan fosil. Definisi paling umum adalah sumber energi yang dapat dengan cepat dipulihkan kembali secara alami, dan prosesnya berkelanjutan. Dengan definisi ini, maka bahan bakar nuklir dan fosil tidak termasuk di dalamnya.
      Energi Terbarukan adalah energi yang pada umumnya merupakan sumberdaya non fosil yang dapat diperbaharui dan apabila dikelola dengan baik maka sumberdayanya tidak akan habis. Jenis energi terbarukan meliputi Panasbumi, Mikrohidro, Tenaga Surya, Tenaga Gelombang, Tenaga Angin, dan Biomasa.

      Dari definisinya, semua energi terbarukan sudah pasti juga merupakan energi berkelanjutan, karena senantiasa tersedia di alam dalam waktu yang relatif sangat panjang sehingga tidak perlu khawatir atau antisipasi akan kehabisan sumbernya. Para pengusung energi non-nuklir tidak memasukkan tenaga nuklir sebagai bagian energi berkelanjutan karena persediaan uranium-235 di alam ada batasnya, katakanlah ratusan tahun. Tetapi, para penggiat nuklir berargumentasi bahwa nuklir termasuk energi berkelanjutan jika digunakan sebagai bahan bakar di reaktor pembiak cepat (FBR: Fast Breeder Reactor) karena cadangan bahan bakar nuklir bisa "beranak" ratusan hingga ribuan kali lipat.

2. Sumber Energi Terbarukan
A. Energi Surya
    Matahari adalah sumber kita yang paling kuat energi. Sinar matahari, atau energi surya, dapat digunakan untuk pemanasan rumah, pencahayaan dan pendinginan dan bangunan lainnya, pembangkit listrik, pemanas air, dan berbagai proses industri. Sebagian besar bentuk energi terbarukan berasal baik secara langsung atau tidak langsung dari matahari. Sebagai contoh, panas dari matahari menyebabkan angin bertiup, memberikan kontribusi terhadap pertumbuhan pohon dan tanaman lain yang digunakan untuk energi biomassa, dan memainkan peran penting dalam siklus penguapan dan curah hujan yang menjadi sumber energi air.

B. Energi Angin
   Angin adalah gerakan udara yang terjadi ketika naik udara hangat dan udara dingin di bergegas untuk menggantinya. Energi angin telah digunakan selama berabad-abad untuk kapal layar dan kincir angin untuk menggiling gandum. Hari ini, energi angin ditangkap oleh turbin angin dan digunakan untuk menghasilkan listrik.

C. Energi Air
    Air yang mengalir ke hilir merupakan kekuatan. Air adalah sumber daya terbarukan, terus diisi oleh siklus global penguapan dan curah hujan. Panas matahari menyebabkan air di danau dan lautan menguap dan membentuk awan. Air kemudian jatuh kembali ke bumi sebagai hujan atau salju, dan mengalir ke sungai dan sungai yang mengalir kembali ke laut. Air yang mengalir dapat digunakan untuk memutar turbin yang mendorong proses mekanis untuk memutar generator. Energi air mengalir dapat digunakan untuk menghasilkan listrik.

D. Energi Biomassa
    Biomassa telah menjadi sumber energi penting sejak orang pertama mulai membakar kayu untuk memasak makanan dan menghangatkan diri melawan dinginnya musim dingin. Kayu masih merupakan sumber yang paling umum dari energi biomassa, tetapi sumber-sumber lain dari energi biomassa meliputi tanaman pangan, rumput dan tanaman lain, limbah pertanian dan kehutanan dan residu, komponen organik dari limbah kota dan industri, bahkan gas metana dari tempat pembuangan sampah dipanen masyarakat. Biomassa dapat digunakan untuk menghasilkan listrik dan sebagai bahan bakar untuk transportasi, atau untuk memproduksi produk yang tidak akan membutuhkan penggunaan bahan bakar fosil.

E. Hidrogen
    Hidrogen memiliki potensi yang luar biasa sebagai sumber bahan bakar dan energi, tetapi teknologi yang dibutuhkan untuk mewujudkan potensi ini masih dalam tahap awal. Hidrogen adalah elemen paling umum di Bumi. Air adalah dua-pertiganya hidrogen, tapi hidrogen di alam selalu ditemukan dalam kombinasi dengan unsur lainnya. Setelah dipisahkan dari unsur-unsur lain, hidrogen dapat digunakan untuk menggerakkkan kendaraan, menggantikan gas alam untuk pemanasan dan memasak, dan untuk menghasilkan listrik.

F. Energi Panas Bumi
    Panas di dalam bumi menghasilkan uap dan air panas yang dapat digunakan untuk pembangkit listrik dan menghasilkan listrik, atau untuk aplikasi lain seperti pemanasan rumah dan pembangkit listrik untuk industri. Energi panas bumi dapat ditarik dari waduk bawah tanah dengan pengeboran, atau dari reservoir panas bumi yang terletak lebih dekat ke permukaan.

G. Energi Gelombang Laut
    Lautan menyediakan beberapa bentuk energi terbarukan, dan masing-masing didorong oleh kekuatan yang berbeda. Energi dari gelombang laut dan pasang surut dapat dimanfaatkan untuk menghasilkan listrik, dan energi termal laut-dari panas yang tersimpan dalam air laut-dapat juga diubah menjadi listrik. Meskipun pada masa sekarang, energi laut memerlukan teknologi yang mahal dibandingkan dengan sumber energi terbarukan lainnya, tapi laut tetap penting sebagai sumber energi potensial untuk masa depan.

Macam-macam Circuit Breaker (CB)

Macam-macam Circuit Breaker (CB) - Berikut ini adalah informasi mengenai Macam-macam Circuit Breaker (CB) yang akan diulas lebih lanjut di dunia elektro

Macam-macam Circuit Breaker (CB)


      Circuit Breaker atau Sakelar Pemutus Tenaga (PMT) adalah suatu peralatan pemutus rangkaian listrik pada suatu sistem tenaga listrik, yang mampu untuk membuka dan menutup rangkaian listrik pada semua kondisi, termasuk arus hubung singkat, sesuai dengan ratingnya. Juga pada kondisi tegangan yang normal ataupun tidak normal. Adapun macam dari Circuit Breaker yaitu:

1. MCB (Miniatur Circuit Breaker) 
2. MCCB (Mold Case Circuit Breaker)
3. ACB (Air Circuit Breaker) 
4. OCB (Oil Circuit Breaker)
5. VCB (Vacuum Circuit Breaker) 
6. SF6CB (Sulfur Circuit Breaker) 

1. MCB (Miniatur Circuit Breaker) 

    MCB adalah suatu rangkaian pengaman yang dilengkapi dengan komponen thermis (bimetal) untuk pengaman beban lebih dan juga dilengkapi relay elektromagnetik untuk pengaman hubung singkat.
MCB banyak digunakan untuk pengaman sirkit satu fasa dan tiga fasa. Keuntungan menggunakan MCB, yaitu :
1.  Dapat memutuskan rangkaian tiga fasa walaupun terjadi hubung singkat pada salah satu fasanya.
2.  Dapat digunakan kembali setelah rangkaian diperbaiki akibat hubung singkat atau beban lebih.
3.  Mempunyai respon yang baik apabila terjadi hubung singkat atau beban lebih.

     Pada MCB terdapat dua jenis pengaman yaitu secara thermis dan elektromagnetis, pengaman termis berfungsi untuk mengamankan arus beban lebih sedangkan pengaman elektromagnetis berfungsi untuk mengamankan jika terjadi hubung singkat.

      Pengaman thermis pada MCB memiliki prinsip yang sama dengan thermal overload yaitu menggunakan dua buah logam yang digabungkan (bimetal), pengamanan secara thermis memiliki kelambatan, ini bergantung pada besarnya arus yang harus diamankan, sedangkan pengaman elektromagnetik menggunakan sebuah kumpa- ran yang dapat menarik sebuah angker dari besi lunak.

       MCB dibuat hanya memiliki satu kutub untuk pengaman satu fasa, sedangkan un- tuk pengaman tiga fasa biasanya memiliki tiga kutub dengan tuas yang disatukan, sehingga apabila terjadi gangguan pada salah satu kutub maka kutub yang lainnya juga akan ikut terputus.
Berdasarkan penggunaan dan daerah kerjanya, MCB dapat digolongkan  menjadi 5 jenis ciri yaitu :
  • Tipe Z (rating dan breaking capacity kecil) Digunakan untuk pengaman rangkaian semikonduktor dan  trafo-trafo yang sen- sitif terhadap tegangan.
  • Tipe K (rating dan breaking capacity kecil) Digunakan untuk mengamankan alat-alat rumah tangga.
  • Tipe G (rating besar) untuk pengaman motor.
  • Tipe L (rating besar) untuk pengaman kabel atau jaringan.
  • Tipe H untuk pengaman instalasi penerangan bangunan
Gb. MCB (Miniatur Circuit Breaker)

2. MCCB (Mold Case Circuit Breaker)

      MCCB merupakan salah satu alat pengaman yang dalam proses operasinya mem- punyai dua fungsi yaitu sebagai pengaman dan sebagai alat untuk penghubung.
Jika dilihat dari segi pengaman, maka MCCB dapat berfungsi sebagai pengaman gangguan arus hubung singkat dan arus beban lebih. Pada jenis tertentu pengaman ini, mempunyai kemampuan pemutusan yang dapat diatur sesuai dengan yang diinginkan.
Gb. MCCB (Mold Case Circuit Breaker)

3. ACB (Air Circuit Breaker) 

        ACB (Air Circuit Breaker) merupakan jenis circuit breaker dengan sarana pemadam busur api berupa udara. ACB dapat digunakan pada tegangan rendah dan tegangan menengah. Udara pada tekanan ruang atmosfer digunakan sebagai peredam busur api yang timbul akibat proses switching maupun gangguan.
Gb. ACB (Air Circuit Breaker)

4. OCB (Oil Circuit Breaker)

       Oil Circuit Breaker adalah jenis CB yang menggunakan minyak sebagai sarana pemadam busur api yang timbul saat terjadi gangguan. Bila terjadi busur api dalam minyak, maka minyak yang dekat busur api akan berubah menjadi uap minyak dan busur api akan dikelilingi oleh gelembung-gelem- bung uap minyak dan gas.

Sejarah Penyediaan Tenaga Listrik

Sejarah Penyediaan Tenaga Listrik - Berikut ini adalah informasi mengenai Sejarah Penyediaan Tenaga Listrik yang akan kami ulas di dunia elektro

Sejarah Penyediaan Tenaga Listrik

      Energi listrik adalah salah satu bentuk energi yang dapat berubah ke bentuk energi lainnya. Sejarah tenaga listrik berawal pada januari 1882, ketika beroperasinya pusat tenaga listrik yang pertama di London Inggris. Kemudian pada tahun yang sama, bulan September juga beroperasi pusat tenaga listrik di New York city, Amerika. Keduanya menggunakan arus searah tegangan rendah, sehingga belum dapat mencukupi kebutuhan kedua kota besar tersebut, dan dicari sistem yang lebih memadai.
      Pada tahun 1885 seorang dari prancis bernama Lucian Gauland dan John Gibbs dari Inggris menjual hak patent generator arus bolak-balik kepada seorang pengusaha bernama George Westinghouse. Selanjutnya dikembang- an generator arus bolak-balik dengan tegangan tetap, pembuatan transforma- tor dan akhirnya diperoleh sistem jaring- an arus bolak-balik sebagai transmisi dari pembangkit ke beban/pemakai. Sejarah penyediaan tenaga listrik di Indonesia dimulai dengan selesai dibangunnya pusat tenaga listrik di Gambir, Jakarta (Mei 1897), kemudian di Medan (1899), Surakarta (1902), Bandung (1906), Surabaya (1912), dan Banjarmasin (1922).
     Pusat-pusat tenaga listrik ini pada awalnya menggunakan tenaga thermis. Kemudian disusul dengan pembuatan pusat-pusat listrik tenaga air : PLTA Giringan di Madiun (1917), PLTA Tes di Bengkulu (1920), PLTA Plengan di Priangan (1922), PLTA Bengkok dan PLTA Dago di Bandung (1923). Sebelum perang dunia ke-2, pada umumnya pengusahaan listrik di Indonesia diolah oleh perusahaan- perusahaan swasta, diantaranya yang terbesar adalah NIGEM (Nederlands Indische Gas en Electriciteits Maatschappij) yang kemudian menjelma menjadi OGEM (Overzese Gas en Electriciteits Maatschappij), ANIEM (Algemene Nederlands Indhische Electriciteits Maatschappij), dan GEBEO (Gemeen Schappelijk Electriciteits Bedrijk Bandung en Omsheken).


Sedangkan Jawatan Tenaga Air (s’Lands Waterkroct Bedrijren, disingkat LWB) membangun dan mengusahakan sebagian besar pusat-pusat listrik tenaga air di Jawa Barat. Pada tahun 1958 pengelolaannya dialihkan ke negara pada Perusahaan Umum Listrik Negara.



Simbol-simbol Instalasi Listrik

Simbol-simbol Instalasi Listrik - Berikut ini adalah informasi mengenai Simbol-simbol Instalasi Listrik yang kami bahas di dunia elektro

Simbol-simbol Instalasi Listrik



Pembangkit Tenaga Listrik

Pembangkit Tenaga Listrik - Berikut ini adalah informasi mengenai Pembangkit Tenaga Listrik yang akan kami ulas lebih lanjut di dunia elektro

Pembangkit Tenaga Listrik


A. Pengertian

    Pembangkit Tenaga Listrik adalah salah satu bagian dari sistem tenaga listrik, pada Pembangkit Tenaga Listrik terdapat peralatan elektrikal, mekanikal, dan bangunan kerja. Terdapat juga komponen-komponen utama pembangkitan yaitu generator, turbin yang berfungsi untuk mengkonversi energi (potensi) mekanik menjadi energi (potensi) listrik.


    Pada gambar diatas diilustrasikan bahwa listrik yang dihasilkan dari pusat pembangkitan yang menggunakan energi potensi mekanik (air, uap, panas bumi, nuklir, dll) untuk menggerakkan turbin yang porosnya dikopel/digandeng dengan generator. dari generator yang berputar menghasilkan energi listrik. Energi listrik yang dihasilkan disalurkan ke gardu induk melalui jaringan transmisi, kemudian langsung di distribusikan ke konsumen melalui jaringan distribusi.

B. Bagian-bagian Pembangkit Tenaga Listrik

    A. Penggerak utama (prime mover)
         - Mesin diesel
         - Turbin (air, gas, uap)
         - Beserta komponen dan perlengkapan lainnya (kondenser, boiler, dll)
    B. Komponen listrik
         - Generator dan perlengkapannya
         - Transformator 
         - Peralatan proteksi
         - Saluran kabel, busbar, dll
     C. Komponen sipil
         - Bendungan, pipa pesat, prasarana dan sarana penunjang (untuk PLTA)
         - Prasarana dan sarana sipil (pondasi peralatan, jalan, cable dutch, dll)
         - Gedung kontrol 
      D. komponen mekanis
         - Peralatan bantu, peralatan pendingin, peralatan proteksi, dll

C. Jenis-jenis Pembangkit Tenaga Listrik


    1. Pembangkit Listrik Tenaga Mikrohidro (PLTMH)
         PLTMH ini adalah pembangkitan listrik yang memanfaatkan tenaga air, tetapi dalam skala kecil, biasanya PLTMH ini dibangun untuk daerah-daerah terpencil yang susah terjangkau oleh PLN.
Gb. PLTMH

    2. Pembangkit Listrik Tenaga Air (PLTA)
         PLTA merupakan pusat pembangkitan listrik yang menggunakan energi potensial yang dihasilkan oleh air, sehingga dapat memutarkan turbin air dan menngerakkan generator. Pola PLTA ini dapat menggunakan sistem bendungan atau aliran sungai (run of river) 
Gb. PLTA
    3. Pembangkit Litrik Tenaga Uap (PLTU)
         PLTU adalah pembangkit yang mengandalkan energi kinetik dari uap untuk menghasilkan energi listrik. Bentuk utama dari pembangkit listrik jenis ini adalah Generator yang dihubungkan ke turbin yang digerakkan oleh tenaga kinetik dari uap panas/kering. Pembangkit listrik tenaga uap menggunakan berbagai macam bahan bakar terutama batu bara dan minyak bakar serta MFO untuk start up awal.
Gb. PLTU
    4. Pembangkit Listrik Tenaga Gas (PLTG)
         PLTG adalah pembangkitan listrik yang mengkonversi energi kinetik dari gas untuk menghasilkan putaran pada turbin gas sehingga menggerakkan generator dan kemudian menghasilkan energi listrik.
Gb. PLTG
    5. Pembangkit Listrik Tenaga Gas dan Uap (PLTGU)
         Pada dasarnya PLTGU adalah gabungan dari PLTG dan PLTU yang dikombinasikan, PLTGU sangat efektif dikarenakan pemanfaatan energi yang sangat efisien, dengan menggunakan satu macam bahan bakar dapat menggerakkan dua turbin, yaitu tubin gas dan turbin uap.
Gb. PLTGU
    6. Pembangkit Listrik Tenaga Panas Bumi (PLTP)
         PLTP merupakan pembangkit listrik yang memanfaatkan energi dari panas bumi, sehinnga dapat memanaskan ketel uap, dan uap yang dihasilkan dugunakan untuk menggerakkan turbin.
Gb. PLTP
    7. Pembangkit Listrik Tenaga Diesel (PLTD)
         PLTD adalah pembangkit listrik yang menggunakan tenaga mesin diesel sebagai penggerak untuk memutarkan turbin.
Gb. PLTD
    8. Pembangkit Litrik Tenaga Nuklir (PLTN)
         PLTN adalah pembangkit listrik yang mengkonversi energi panas (thermal) menjadi energi mekanik dimana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik.
Gb. PLTN

Demikian ulasan mengenai Pembangkit Tenaga Listrik yang di bahas oleh dunia elekto

Teknik Tenaga Listrik

Teknik Tenaga Listrik - Berikut adalah artikel mengenai Teknik Tenaga Listrik yang akan diulas lebih lanjut di dunia elektro

Teknik Tenaga Listrik


        Teknik Tenaga Listrik adalah ilmu yang mempelajari teknik-teknik yang berhubungan dengan tenaga listrik dan permasalahannya sehingga tenaga listrik dapat disalurkan dengan baik.
Bahasan Teknik Tenaga Listrik meliputi:
1.    Mesin Listrik
              a.    Mesin listrik DC (Direct Curent)
                     1)    Generator DC ( kalau diberi arus listrik berubah menjadi motor)
                         a)    Generator DC Seri (arus besar)
                         b)    Generator DC Shunt (parallel)
                         c)    Generator DC Kompon (kombinasi)
                         Ø  Generator  DC kompon panjang
                         Ø  Generator   DC kompon pendek
             2)    Motor listrik DC ( Generator kalau diberi arus listrik berubah menjadi motor listrik )
                 a)    Motor listrik Dc Seri (arus besar)
                 b)    Motor listrik DC Shunt (parallel)
                 c)    Motor listrik DC Kompon (kombinasi)
                         Ø  Motor listrik  DC kompon panjang
                         Ø  Motor listrik  DC kompon pendek

             b.    Mesin listrik AC (Alternating Curent )
1)    Generator AC 1 fasa / 3 fasa
2)    Motor AC
a)    Motor induksi
b)    Motor sinkron
3.    Transformator
4.    Saluran system TTL

Gb. Saluran sistem TTL
Gb. Sistem Tenaga Listrik
Keterangan :
PTL = Pembangkit Tenaga Listrik
GI = Gardu Induk
GD = Gardu Distribusi
TET = Tegangan Ekstra Tinggi
TT = Tegangan Tinggi
TM = Tegangan Menengah
TR = Tegangan Rendah

Prinsip Induksi Transformator

Prinsip Induksi Transformator -  Berikut ini adalah artikel mengenai Prinsip Induksi Transformator yang akan dibahas lebih lanjut di dunia elektro

Prinsip Induksi Transformator

1.1 Prinsip Induksi

        Hukum utama dalam transformator adalah hukum induksi faraday. Menurut hukum ini suatu gaya listrik melalui garis lengkung yang tertutup, adalah berbanding lurus dengan perubahan persatuan waktu dari pada arus induksi atau flux yang dilingkari oleh garis lengkung itu.
        Selain hukum Faraday, transformator menggunakan hukum Lorenz seperti terlihat pada gambar 1.1 berikut ini.
Gambar 1.1 Hukum Lorenz
Dasar dari teori transformator adalah sebagai berikut:
       Apabila ada arus listrik bolak-balik yang mengalir mengelilingi suatu inti besi maka inti besi itu akan berubah menjadi magnet (seperti gambar 1.2) dan apabila magnet tersebut dikelilingi oleh suatu belitan maka pada kedua ujung belitan tersebut akan terjadi beda tegangan mengelilingi magnet,  maka akan timbul gaya gerak listrik (GGL). Dari prinsip tersebut di atas dibuat suatu transformator seperti gambar 1. di bawah ini.
Gambar 1.2 Suatu arus listrik mengelilingi inti besi sehingga terjadi magnet
Gambar 1.3 Lilitan pada trafo
Gambar 1.4 Prinsip Kerja Transformator
     Berdasarkan hukum Faraday yang menyatakan magnitude dari electromotive motive force (emf) proposional terhadap perubahan fluks terhubung dan hukum Lenz yang menyatakan arah dari emf berlawanan dengan arah fluks sebagai reaksi perlawnan dari perubahan fluks tersebut didapatkan persamaan:





Dimana :
e = emf sesaat (instantaneous emf)
Ψ = fluks terhubung (linked flux)
Dan pada transformer ideal yang diekstansi dengan sumber sinusiodal berlaku persamaan :
E = 4,44.Φm.N.f
E N f m = 4,44.Φm.N.f

Dimana :    
E     = Tegangan (rms)
N     = jumlah lilitan
Φm  = fluks puncak (peak flux)
f       = frekuensi
dan persamaan:





Dimana :  
1 = Tegangan Primer
E­­­­2 = Tegangan Sekunder
N1 = Belitan Primer
N2 = Belitan Sekunder
 I1  = Arus Primer

 I2  = Arus Sekunder

       Dikarenakan  pada  transformer  ideal  seluruh  mutual  flux  yang  dihasilkan  salah  satu kumparan  akan diterima  seutuhnya oleh kumparan  yang lainnya  tanpa  adanya  leakage  flux maupun  loss  lain  misalnya berubah  menjadi  panas.  Atas  dasar  inilah  didapatkan  pula persamaan:
P1  = P2
V1.I1  = V2.I2
N1.I1  = N2.I2


Rangkaian Starting Motor Star-Delta

Rangkaian Starting Motor Star-Delta - Berikut adalah informasi mengenai Rangkaian Starting Motor Star-Delta yang akan kami bahas hanya di Dunia Elektro

A. Rangkaian Starting Motor Star-Delta

       Untuk mengurangi besarnya arus start motor yang mendekati 7x arus nominal maka dapat dengan menggunakan metode start Star-Delta. Dengan metode ini motor awalnya diset pada asutan Star, setelah motor mencapai kecepatan 80% kecepatan maksimal, sambungan diubah ke sambungan Delta. Dengan cara ini maka torsi dapat dipertahankan sedangkan lonjakan arus start dapat ditekan.

Berikut adalah gambar pengawatan dari Rangkaian Kontrol, Rangkaian Power Star-Delta


Gb. Rangkaian Kendali


Gb. Rangkaian Power Star-Delta


B. Prnsip Kerja Rangkaian

       Fungsi dari rangkaian Star-Delta sendiri adalah untuk mengurangi arus start yaitu saat pertama kali motor di hidupkan Star delta adalah sebuah sistem starting motor yang  paling banyak dipergunakan untuk starting motor listrik. Dengan menggunakan star delta starter Lonjakan arus listrik  yang terlalu tinggi bisa dihindarkan. cara kerjanya adalah  saat start awal motor tidak dikenakan tegangan penuh hanya 0.58  dengan cara dihubung bintang/ star. Setelah motor berputar dan arus sudah mulai turun dengan menggunakan timer arus dipindahkan menjadi segitiga/ delta sehingga tegangan dan arus yang mengalir ke motor penuh. 

Tukar Link

Tukar Link - Berikut ini adalah informasi buat sobat Blogger yang ingin Tukar Link dengan Blog saya Dunia Elektro

Tukar Link


Page ini saya buat khusus untuk para sobat Blogger yang ngin bertukar link dengan blog saya, Bagi Blogger Tukar Link merupakan hal yang cukup efektif untuk meningkatkan SEO blog kita. Untuk bertukar link dengan Blog saya cukup sobat tinggalkan komentar di page ini.

Untuk memasang link blog ini anda dapat menulis dengan :
name : Dunia Elektro

Atau sobat blogger bisa langsung copy link dibawah ini 


Tinggalkan komentar dengan Nama blog dan URL blog sobat, nanti akan saya pasang link blog anda pada home page blog saya. 
Terima Kasih.... Salam Blogger

Motor Listrik 3 Fasa

Motor Listrik 3 Fasa - Berikut ini adalah teori mengenai Motor Listrik 3 Fasa yang akan kami bahas lebih lanjut hanya di dunia elektro


Motor Listrik 3 Fasa

A. Motor Listrik 3 Fasa

     Motor AC 3 phase bekerja dengan memanfaatkan perbedaan fasa sumber untuk menimbulkan gaya putar pada rotornya. Jika pada motor AC 1 phase untuk menghasilkan beda phase diperlukan penambahan komponen Kapasitor (baca disini), pada motor 3 phase perbedaan phase sudah didapat langsung dari sumber seperti terlihat pada gambar arus 3 phase berikut ini:
Gb. Grafik arus 3 fasa

Pada gambar di atas, arus 3 phase memiliki perbedaan phase 60 derajat antar phasenya. Dengan perbedaan ini, maka penambahan kapasitor tidak diperlukan.

B. Konstruksi Motor Listrik 3 Fasa
        Motor induksi tiga fasa memiliki dua komponen dasar yaitu stator dan rotor, bagian rotor dipisahkan dengan bagian stator oleh celah udara yang sempit (air gap) dengan jarak antara 0,4 mm sampai 4 mm. Tipe dari motor induksi tiga fasa berdasarkan lilitan pada rotor dibagi menjadi dua macam yaitu rotor belitan (wound rotor) adalah tipe motor induksi yang memiliki rotor terbuat dari lilitan yang sama dengan lilitan statornya dan rotor sangkar tupai (Squirrel-cage rotor) yaitu tipe motor induksi dimana konstruksi rotor tersusun oleh beberapa batangan logam yang dimasukkan melewati slot-slot yang ada pada rotor motor induksi, kemudian setiap bagian disatukan oleh cincin sehingga membuat batangan logam terhubung singkat dengan batangan logam yang lain.
Konstruksi Motor Listrik 3 Fasa
Gb. Konstruksi Motor Listrik 3 Fasa

C. Prinsip Kerja Motor Listrik 3 Fasa
Apabila sumber tegangan 3 fase dipasang pada kumparan stator, akan timbul medan putar dengan kecepatan seperti rumus berikut :

Ns = 120 f/P

dimana:
Ns = Kecepatan Putar
f  = Frekuensi Sumber
P = Kutub motor

        Medan putar stator tersebut akan memotong batang konduktor pada rotor. Akibatnya pada batang konduktor dari rotor akan timbul GGL induksi. Karena batang konduktor merupakan rangkaian yang tertutup maka GGL akan menghasilkan arus (I). Adanya arus (I) di d alam medan magnet akan menimbulkan gaya (F) pada rotor. Bila kopel mula yan g dihasilkan oleh gaya (F) pada rotor cukup besar untuk memikul kopel beban, rotor akan berputar searah dengan medan putar stator. GGL induksi timbul karena terpoton gn ya batang konduktor (rotor) oleh medan putar stator. Artinya agar GGL induksi tersebut timbul, diperlukan adanya perbedaan relatif antara kecepatan medan putar stator (ns) dengan kecepatan berputar rotor (nr).

Perbedaan kecepatan antara nr dan ns disebut slip (s), dinyatakan dengan

S= (ns- nr)/ ns

Bila nr = ns, GGL induksi tidak akan timbul dan arus tidak mengalir pada batang konduktor (rotor), dengan demikian tidak dihasilkan kopel. Dilihat dari cara kerjanya, motor induksi disebut juga sebagai motor tak serempak atau asinkron.

D. Hubungan antara beban, kecepatan dan torsi (torque)
        Gambar di bawah ini menunjukkan grafik hubungan antara torque - kecepatan dengan arus pada motor induksi 3 phase:
• Motor mulai menyala ternyata terdapat arus start yang tinggi akan tetapi torque-nya rendah.
• Saat motor mencapai 80% dari kecepatan penuh, torque-nya mencapai titik tertinggi dan arusnya mulai
menurun.
• Pada saat motor sudah mencapai kecepatan penuh, atau kecepatan sinkron, arus torque dan stator turun ke nol.


E. Keuntungan dan Kerugian Motor 3 Fasa
Keuntungan motor 3 fasa : 
Konstruksi sangat kuat dan sederhana terutama bila motor dengan rotor sangkar.
Harganya relatif murah dan kehandalannya tinggi.
Effesiensi relatif tinggi pada keadaan normal, tidak ada sikat sehingga rugi gesekan kecil.
Biaya pemeliharaan rendah karena pemeliharaan motor hampir tidak diperlukan. 
Kerugian Penggunaan Motor Induksi:
Kecepatan tidak mudah dikontrol 
Power faktor rendah pada beban ringan 
Arus start biasanya 5 sampai 7 kali dari arus nominal

F. Pengasutan Motor Listrik 3 Fasa
Pengasutan merupakan metoda penyambungan kumparan-kumparan dalam motor 3 phase. Ada 2 model penyambungan kumparan pada motor 3 phase:
1. Sambungan Bintang/Star/Y
2. Sambungan Segitiga/Delta

1. Sambungan Star

Sambungan bintang dibentuk dengan menghubungkan salah satu ujung dari ketiga kumparan menjadi satu. Ujung kumparan yang digabung tersebut menjadi titik netral, karena sifat arus 3 phase yang jika dijumlahkan ketiganya hasilnya netral atau nol.  


Nilai tegangan phase pada sambungan bintang =  √3 x tegangan antar phase

2. Sambungan Delta

Gb. Sambungan Delta

Sambungan delta atau segitiga didapat dengan menghubungkan kumparan-kumparan motor sehingga membentuk segitiga.  Pada sambungan delta tegangan kumparan = tegangan antar phase akan tetapi arus jaringan sebesar √3 arus line.