Generator Sinkron

Generator Sinkron - Berikut adalah materi mengenai Generator Sinkron yang akan diulas lebih lanjut di Dunia Elektro

Generator Sinkron


A. Konstruksi Generator Sinkron
     Pada dasarnya konstruksi dari generator sinkron adalah sama dengan konstruksi motor sinkron, dan secara umum biasa disebut mesin sinkron. Ada dua struktur kumparan pada mesin sinkron yang merupakan dasar kerja dari mesin tersebut, yaitu kumparan yang mengalirkan penguatan DC (membangkitkan medan magnet, biasa disebut sistem eksitasi) dan sebuah kumparan (biasa disebut jangkar) tempat dibangkitkannya GGL arus bola-balik.
     Hampir semua mesin sinkron mempunyai belitan GGL berupa stator yang diam dan struktur medan magnit berputar sebagai rotor. Kumparan DC pada struktur medan yang berputar dihubungkan pada sumber DC luar melaui slipring dan sikat arang, tetapi ada juga yang tidak mempergunakan sikat arang yaitu sistem “brushless excitation”.

B. Prinsip Kerja Generator Sinkron
  Kecepatan rotor dan frekuensi dari tegangan yang dibangkitkan berbanding secara langsung memperlihatkan prinsip kerja dari sebuah generator AC dengan dua kutub, dan dimisalkan hanya memiliki satu lilitan yang terbuat dari dua penghantar secara seri, yaitu penghantar a dan a’.
   Lilitan seperti ini disebut Lilitan terpusat, dalam generator sebenarnya terdiri dari banyak lilitan dalam masing-masing Phasa yang terdistribusi pada masing-masing alur stator dan disebut Lilitan terdistribusi.
     Diasumsikan rotor berputar searah jarum jam, maka flux medan rotor bergerak sesuai lilitan jangkar. Satu putaran rotor dalam satu detik menghasilkan satu siklus per ditik atau 1 Hertz (Hz). Bila kecepatannya 60 revolution per menit (Rpm), frekuensi 1 Hz.
    Untuk frekuensi f = 60 Hz, maka rotor harus berputar 3600 Rpm. Untuk kecepatan rotor n rpm, rotor harus berputar pada kecepatan n/60 revolution per detik (rps). Bila rotor  mempunyai lebih dari 1 pasang kutub, misalnya P kutub maka masing-masing revolution dari  rotor menginduksikan P/2 siklus tegangan dalam lilitan stator. Frekuensi dari tegangan induksi sebagai sebuah fungsi dari kecepatan rotor.
f = P n Hertz
2 60
    Untuk generator sinkron tiga phasa, harus ada tiga bbelitan yang masing-masing terpisah sebesar 120 derajat listrik dalam ruang sekitar keliling celah udara seperti diperlihatkan pada kumparan a – a’, b – b’ dan c – c’
     Masing-masing lilitan akan menghasilkan gelombang Fluksi sinus satu dengan lainnya berbeda 120 derajat listrik. Dalam keadaan seimbang besarnya fluksi sesaat :
ΦA  = Φ m · Sin ωt  
ΦB = Φ m · Sin (ωt – 120°)
ΦC = Φ m · Sin (ωt – 240°)

C. Bentuk Penguatan
     Seperti telah diuraikan diatas, bahwa untuk membangkitkan fluks magnetik diperlukan penguatan DC. Penguatan DC ini bisa diperoleh dari generator DC penguatan sendiri yang seporos dengan rotor mesin sinkron. Pada mesin sinkron dengan kecepatan rendah, tetapi rating daya yang besar, seperti generator Hydroelectric (Pembangkit listrik tenaga air), maka generator DC yang digunakan tidak dengan penguatan sendiri tetapi dengan “Pilot Exciter” sebagai penguatan atau menggunakan magnet permanent (magnet tetap).
Gambar 1. Generator Sinkron Tiga fasa dengan Penguatan Generator DC “Pilot Exciter”.
Gambar 2. Generator Sinkron Tiga fasa dengan Sistem Penguatan “Brushless Exciter System”.
             
Alternatif lainnya untuk penguatan eksitasi adalah menggunakan Diode ssilikon dan Thyristor.
Ada dua tipe sistem penguatan “Solid state”, yaitu:
  •Sistem statis yang menggunakan Diode atau Thyristor statis, dan arus dialirkan ke rotor melalui Slipring.
  •“Brushless System”, pada sistem ini penyearah dipasangkan diporos yang berputar dengan rotor, sehingga tidak dibutuhkan sikat arang dan slip-ring.

D. Bentuk Rotor
     Untuk medan rotor yang digunakan tergantung pada kecepatan mesin, mesin dengan kecepatan tinggi seperti turbo generator mempunyai bentuk silinder gambar 3a, sedangkan mesin dengan kecepatan rendah seperti Hydroelectric atau Generator Listrik Diesel mempunyai rotor kutub menonjol gambar b.
Gambar 3a. Bentuk Rotor kutub silinder.
Gambar b. Bentuk Rotor kutub menonjol.
E. Bentuk Stator
      Stator dari Mesin Sinkron terbuat dari bahan ferromagnetik , seperti telah dibahas di sini, yang berbentuk laminasi untuk mengurangi rugi-rugi arus pusar. Dengan inti ferromagnetik yang bagus berarti permebilitas dan resistivitas dari bahan tinggi.
Gambar . Inti Stator dan Alur pada Stator
Gambar diatas memperlihatkan alur stator tempat kumparan jangkar. Belitan jangkar (stator) yang umum digunakan oleh mesin sinkron tiga fasa, ada dua tipe yaitu :
  a. Belitan satu lapis (Single Layer Winding).
  b. Belitan berlapis ganda (Double Layer Winding).

F. Bentuk Stator Satu Lapis
      Gambar dibawah memperlihatkan belitan satu lapis, karena hanya ada satu sisi lilitan didalam masing-masing alur. Bila kumparan tiga fasa dimulai pada Sa, Sb, dan Sc dan berakhir di Fa, Fb, dan Fc bisa disatukan dalam dua cara, yaitu hubungan bintang dan segitiga. Antar kumparan fasa dipisahkan sebesar 120 derajat listrik atau 60 derajat mekanik, satu siklus GGL penuh akan dihasilkan bila rotor dengan 4 kutub berputar 180 derajat mekanis. Satu siklus GGL penuh menunjukkan 360 derajat listrik, adapun hubungan antara sudut rotor mekanis α_mek dan sudut listrik α_lis, adalah :

Gambar . Belitan Satu Lapis Generator Sinkron Tiga Fasa.


Jenis-jenis Pemisah (Disconnecting Switch)

Jenis-jenis Pemisah (Disconnecting Switch) - Berikut ini adalah ulasan materi mengenai Jenis-jenis Pemisah (Disconnecting Switch) yang akan dibahas di Dunia Elektro

Jenis-jenis Pemisah (Disconnecting Switch)



     Pemisah (PMS) atau disconnecting switch adalah sebuah alat yang dipergunakan untuk menyatakan secara visual bahwa suatu peralatan masih tersambung atau sudah bebas dari tegangan kerja. Dari definisi diatas maka dapat diketahui fungsi dari pemisah (PMS) adalah sebuah alat yang dapat menyambung atau memutuskan rangkaian dengan arus yang rendah kurang lebih lima ampere (5A). Sesuai dengan fungsinya pemisah dibagi menjadi dua yaitu :
  A. Pemisah Tanah (Pisau Pentanahan)
  B. Pemisah Peralatan

Sedangkan menurut gerakan dari lengannya pemisah dibagi menjadi lima yaitu:
 1. Pemisah Putar
 2. Pemisah Luncur
 3. Pemisah Siku
 4. Pemisah Engsel
 5. Pemisah Pantograph

1. Pemisah Putar
Saklar pemisah putar memiliki dua buah kontak diam dan dua buah kontak gerak yang dapat berputar pada sumbunya. Model saklar pemisah ini biasanya di letakkan di luar Gardu Induk.
Gb. Pemisah Putar
2. Pemisah Siku
Saklar pemisah siku ini tidak memiliki kontak diam tetapi hanya terdapat dua buah kontak gerak yang gerakannya hanya mempunyai besar sudut 90 derajat. Model saklar pemisah ini biasanya di letakkan di luar Gardu Induk.
Gb. Pemisah Siku

Gb. Pemisah Siku
3. Pemisah Engsel
Saklar pemisah engsel ini memiliki satukontak diam dan satu engsel yang dapat membuka ke atas dengan sudut 90 derajat. Saklar pemisah ini gerakannya dari engsel yang biasanya digunakan untuk tegangan menengah 20 kV – 6 kV. Model saklar pemisah ini biasanya di letakkan di luar Gardu Induk.
Gb. Pemisah engsel
4. Pemisah Luncur
Saklar pemisah luncur ini gerakan kontaknya hanya bergerak keatas dan kebawah saja. Model saklar pemisah ini biasanya berada di dalam kubikel dengan peralatan-peralatan yang lain dan di letakkan di dalam Gardu Induk.
Gb. Pemisah Luncur
5. Pemisah Pantograph
Saklar pemisah pantograph ini mempunyai kontak diam yang terletak pada rel dan kontak gerak yang terpasang pada ujung lengan-lengan pantograph. Model saklar pemisah ini biasanya di letakkan di luar Gardu Induk. Pemisah pantograph biasanya digunakan di jaringan 500 kV.
Gb. Pemisah Pantograph

Gb. Pemisah Pantograph

Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)

Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) - Pada kesempatan kali ini akan kami ulas materi mengenai Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) hanya di Dunia Elektro

Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)


A. Pengertian Mikrohidro
     Pembangkitan listrik mikrohidro adalah pembangkitan listrik dihasilkan oleh generator listrik DC atau AC. Mikrohidro berasal dari kata micro yang berarti kecil dan hydro artinya air, arti keseluruhan  adalah pembangkitan listrik daya kecil yang digerakkan oleh tenaga air. Tenaga air besaral dari aliran sungai kecil atau danau yang dibendung dan kemudian dari ketinggian tertentu dan memiliki debit yang sesuai akan menggerakkan turbin yang dihubungkan dengan generator listrik.
     Generator yang digunakan untuk mikrohidro dirancang mudah untuk dioperasikan dan dipelihara, didesain menunjang keselamatan, tetapi peralatan dari listrik akan menjadi berbahaya bila tidak digunakan dengan baik. Beberapa point dari pedoman ini, instruksinya menunjukan hal yang wajib diperhatikan dan harus diikuti seperti ditunjukkan berikut ini.

B. Prinsip Kerja PLT Mikrohidro
     Pembangkit tenaga listrik mikrohidro pada prinsipnya memanfaatkan beda ketinggian dan jumlah debit air per detik yang ada pada aliran air irigasi, sungai atau air terjun. Aliran air ini akan memutar poros turbin sehingga menghasilkan energi mekanik. Energi ini selanjutnya menggerakkan generator dan menghasilkan energi listrik. 

C. Konversi Energi PLTMH
     Energi Potensial - Energi Mekanik - Energi Listrik
Gb. Sistem PLTMH
D. Bagian-bagian PLT Mikro Hidro
Gb. Sistem PLTMH
1. Waduk (reservoir)
   Waduk adalah danau yang dibuat untuk membandung sungai untuk memperoleh air sebanyak mungkin sehingga mencapai elevasi.

2. Bendungan (dam)
    Dam berfungsi menutup aliran sungai – sungai sehingga terbentuk waduk.Tipe bendungan harus memenuhi syarat topografi, geologi dan syarat lain seperti bentuk serta model bendungan.
Gb. Bendungan
3. Saringan (Sand trap)
   Saringan ini dipasang didepan pintu pengambilan air, berguna untuk menyaring kotoran – kotoran atau sampah yang terbawa sehingga air menjadi bersih dan tidak mengganggu  operasi mesin PLTMH.
Gb. Saringan

4. Pintu pengambilan air (Intake)
   Pintu Pengambilan Air adalah pintu yang dipasang diujung pipa dan hanya digunakan saat pipa pesat dikosongkan untuk melaksanakn  pembersihan pipa atau perbaikan.
Gb. Intake
5. Pipa pesat (penstok)
  Fungsinya untuk mengalirkan air dari saluran pnghantar atau kolam tando menuju turbin. Pipa pesat mempunyai posisi kemiringan yang tajam dengan maksud agar diperoleh kecepatan dan tekanan air yang tinggi untuk memutar turbin. Konstruksinya harus diperhitungkan agar dapat menerima tekanan besar yang timbul termasuk tekanan dari pukulan air. Pipa pesat merupakan bagian yang cukup mahal, untuk itu pemilihan pipa yang tepat sangat penting.
Gb. Penstok
6. Katub utama (main value atau inlet value)
   Katub utama dipasang didepan turbin berfungsi untuk membuka aliran air, Menstart turbin atau menutup aliran (menghentikan turbin). Katup utama ditutup saat perbaikan turbin atau perbaikan mesin dalam rumah pembangkit. Pengaturan tekanan air pada katup utama digunakan pompa hidrolik.

7. Power House
   Gedung Sentral merupakan tempat instalasi turbin air,generator, peralatan Bantu, ruang pemasangan, ruang pemeliharaan dan ruang control.
Beberapa instalasi PLTMH dalam rumah pembangkit adalah :
a. Turbin, merupakan salah satu bagian penting dalam PLTMH yang menerima energi potensial air dan mengubahnya menjadi putaran (energi mekanis). Putaran turbin dihubungkan dengan generator untuk menghasilkan listrik. 
Gb. Turbin
b. Generator, generator yang digunakan adalah generator pembangkit listrik AC. Untuk memilih kemampuan generator dalam menghasilkan energi listrik disesuaikan dengan perhitungan daya dari data hasil survei. Kemampuan generator dalam menghasilkan listrik biasanya dinyatakan dalam VoltAmpere (VA) atau dalam kilo volt Ampere (kVA).
Gb. Generator
c. Penghubung turbin dengan generator, penghubung turbin dengan generator atau sistem transmisi energi ekanik ini dapat digunakan sabuk atau puli, roda gerigi atau dihubungkan langsung pada porosnya.
1) Sabuk atau puli digunakan jika putaran per menit (rpm) turbin  belum memenuhi putaran rotor pada   generator, jadi puli berfungsi untuk menurunkan atau menaikan rpm motor generator.
2) Roda gerigi mempunyai sifat yang sama dengan puli
3) Penghubung langsung pada poros turbin dan generator, jika putaran turbin sudah lama dengan putaran       rotor pada generator.

Gb. Instalasi PLTMH 
E. Perhitungan Teknis
 Potensi daya mikrohidro dapat dihitung dengan persamaan daya:
(P) = 9.8 x Q x Hn x ŋ;
di mana:  
  P   = Daya (kW)
 Q   = debit aliran (m/s)
  Hn = Head net (m)
  9.8 = konstanta gravitasi
   ŋ   = efisiensi keseluruhan.
Misalnya, diketahui data di suatu lokasi adalah sebagai berikut:
Q = 300 m3/s2,  Hn = 12 m dan h = 0.5. Maka,
besarnya potensi day a (P) adalah:
       P = 9.8 x  Q x Hn x h 
          = 9.8 x 300 x 12 x 0.5
          = 17 640 W
          = 17.64 kW